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Abstract— Standard “new-Reno” TCP faces some performance
limitations in very high throughput IP WAN networks, (e.g.,
computing grids) due to a long end-to-end congestion feedback
loop and a conservative behaviour with respect to congestion. We
investigate breathing new life into the following idea: implement
aggressive congestion control via hop-by-hop, link-level flow
control (back-pressure). StudyingTCP’s behaviour at the packet
level on an emulated WAN link allows us to explain: a) the
dependence betweenTCP performance and burstiness at the
Ethernet level; b) the performance and fairness gains obtained
by the activation of Ethernet 802.3x flow control. Recognising
that data moves not from hop to hop but from queue-to-queue,
regardless of the layer, we propose to refine previous hop-by-hop
approaches to a new “Network of Queues” (NoQ) approach,
where each network buffer protects itself against overflow,
thus preventing global network congestion. We finally identify
advantages and limitations and estimate implementation costs
of this approach.

Keywords: Wide Area Networks, flow control, back-pressure,
transport, performance

I. I NTRODUCTION

In packet networking, congestion events are the natural
counterpart of the flexibility to interconnect mismatched el-
ements and freely multiplex flows. Managing congestion in
packet networks is a very complex issue. This is especially
true in IP networking where the priority was on freely inter-
connecting an incredible number of networks of very different
kinds [1]; it would be unrealistic to require every Internet node
in the world to implement a common sophisticated congestion
scheme, independently from its peculiar technology. As such,
the only congestion signal received byTCP from IP is usually
packet loss, or exceptionallyECN [2]. Faced by this (lack
of) information, TCP adopts a careful congestion avoidance
behaviour [3], with complex dynamics. SinceTCP’s conges-
tion control is implemented end-to-end, the delay between
feedback and control is the round trip time, and its dynamics
become “slow” on wide area networks. Adding issues like
fairness with legacy flows,TCP has the issue of poor resource
utilization [4] and does not fit the needs of biologists or
physicists wanting to transfer gigabytes of data routinely on
computing grids.

Today’s proposed enhancements toTCP tackle this problem
in different ways, while trying to retain maximum backwards
compatibility with legacy implementations. HighspeedTCP [5]

and ScalableTCP [6] increase the aggressiveness in high-
performance contexts while trying to stay fair to standard
TCP flows in legacy contexts.TCP Vegas [7] andFAST [8]
manageIP congestion optimally by leveraging other available
congestion information (Round-Trip Time variations, Explicit
Congestion Notification, etc.) to regulate rate of transmission,
aiming at a fine control of buffer filling in routers. The
promising XCP proposition [9] departs further from today’s
standards, implying a costlier migration path: it proposes a
new cooperative congestion control scheme featuring a precise
congestion window indication going back from routers to
senders.

This paper1 starts from a more experimental approach: in
section II, we first analyse detailed flow traces in order to
understand (at the packet level) congestion and performance
dependence on link peculiarities. Then the use of Ethernet’s
flow control protocol (IEEE 802.3x [10], [11]) demonstrates
fair, stabilized and wire rated performance. Section III explains
why congestion control cannot be well implemented purely
layer-wise, ignoring interaction between layers. In section IV
we describe ourNetwork of Queues(NoQ) proposal for man-
aging network congestion using generalized back-pressure.

II. EXPERIMENTS

A. Platform

In order to gain insights on congestion and flow control at
the packet level in a real-world environment, and to understand
how this finally relates toTCP throughputand fairness, we
designed theWAN emulation platform pictured in figure 1. A
couple of senders are injectingTCP flows into an Ethernet
switch EdgeIron 10GC2F (Foundry Networks), using Gigabit
Ethernet links (large black lines). The bottom right part of the
figure emulates a 100 Mb/s Wide Area Network link, with
a 12 ms latency (one-way). Packet captures are performed
at the input of this link. The latency is emulated thanks to
an (over-provisioned) NISTNet [12] box, configured with a
12 ms one-way delay. All machines run a Debian 2.4.20 Linux
kernel. Socket buffer size on senders and receiver were set high
enough (1 Mo), so thatTCP’s end to end flow control (receive

1This second, electronic version is slightly revised compared to the 1st
version printed in the proceedings. In particular the end of section II-D is
updated.
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Fig. 1. Test-bed

Fig. 2. Usual vanilla-TCP performance

window) is not an issue here. The emulatedWAN link has
only 100 Mb/s capacity in order to systematically generate
congestion.

B. Throughput

The first experiments are the simplest ones (withoutEthernet
802.3x flow control), in order to have reference values as
close as possible to well-known, real cases, and to validate
the experimental platform. At first only one of the Gigabit
Ethernet senders, a Broadcom “tigon3” BCM5701 Interface,
is used to send aTCP flow during 15 s through the 100 Mb/s
bottleneck, in order to create congestion inside the switch.
Figure 2 shows the throughput, averaged with a 700-packet
window, as a function of time. The result is the well-known
TCP “sawtooth” oscillation. The average throughput is about
50 Mb/s. As expected, sudden performance drops correspond
to packet drops due to buffer overflows in the Ethernet switch:
the congestion window is halved at these points [3]. The other

Fig. 3. Ethernet bursts harm TCP

and smoother curve on the same figure gives the average
throughputsince the startof the connection.

Link’s burstiness considered harmful:Figure 3 shows the
throughput after changingonly the EthernetNIC/driver: Intel
82543GC/e1000 instead of Broadcom BCM5701/bcm5700.
Surprisingly, the performance oscillates around 20 Mb/s. A
deeper analysis of packets traces revealed that the defaultNIC

and driver settings seem to often aggregate outgoing packets
(as an unfortunateCPU performance optimization), frequently
overflowing the limited buffering of the switch. The reason for
the better performance of the bcm5700 interface and driver
(Fig. 2), is that they run by default anadaptativecoalescing
scheme that prevents interrupt batching at low packet rates (in
order to preserve latency).

Another interesting consequence of these bursts is that the
round-trip time has a corresponding bursty behaviour. For
instance, the number ofACKs deviating noticeably above the
nominal RTT value (more than 1 ms late) is much larger than



Fig. 4. BCM5700+ 802.3x

Fig. 5. E1000+ 802.3x

that for the bcm5700: 3% compared to only 0.1%. Since some
of the alternatives toTCP currently proposed (see section I)
base their estimations of network congestion uponround
trip time variations, the local, link-level, high-frequency jitter
induced by this “mis-shaping” will add noise to their estimates,
in addition to existing issues like undersampling [13]. Time
averaging could reduce this noise, but would further slow
responsiveness.

802.3x, wire-speed performance and robustness:In fig-
ure 4, we come back to the bcm5700 interface, but now
activate theIEEE 802.3x flow control protocol. After a very
short ramping up phase (TCP’s slow start), this has the effect
of bringing the throughput up to the wire rate of the emulated
WAN bottleneck.

Examination of the packet trace shows that the small and
transient throughput drop in the first seconds is due to a lost
packet, which triggeredTCP’s congestion control (uselessly
in this experiment). This packet loss may have come from a
transmission error.

Figure 5 combines 802.3x and the bursty Intel interface.
The burstiness of this interface is clearly visible on the graph,
despite the 700-packets averaging window used for the plot.
Closer packet trace inspection shows bursts of different scales,
the most evident one being bursts of approximately 35 packets
every 4 ms. However, thanks to 802.3x back-pressure, packet
loss is prevented and the full 100 Mb/s wire rated is still
obtained, (compared to only 20 Mb/s without 802.3x). Back-
pressure effectively protects queues in the switch against
congestion, decoupling Ethernet’s burstiness from application
performance.

Fig. 6. 3 hosts compete for the bottleneck

Fig. 7. 3 competing hosts+ 802.3x

C. Fairness

Three hosts now compete for the same 100 Mb/s bottleneck.
They start to transmit one after another, staggered by 10 s.
Each connection is 30 s long. Again, we start with standard
TCP/IP without 802.3x: on figure 6, we can see that the
cooperativeAIMD algorithm of TCP actually gives a approx-
imately fair share of the capacity to each flow. Activating
EthernetPAUSE frames towards the three senders (figure 7) is
quite interesting. Packet losses are prevented. Whenever a new
flow appears or disappears, each flow gets the exact fraction
of the total 100 Mb/s available almost instantly (“almost”
because ofTCP’s slow start). The aggregate throughput is
always equal to the capacity of the bottleneck, and the switch’s
implementation of 802.3x achieves a perfectly fair sharing
between the incoming flows.

The final experiment (figure 8) shows three flows competing
inside the same back-pressuredLinux sender. The aggregate
throughput is still wire-rate. However, contrary to the Ethernet

Fig. 8. 3 flows competinginsidea host + 802.3x



Fig. 9. Performance impact of losses

Fig. 10. Disabling TCP congestion control

switch, the Linux kernel does notfairly share the bottleneck
between sockets, butrandomlydepending on kernel scheduling
issues. Investigating Linux’sTCP kernel code shows that
congestion in queuesinside the host is not handled like
network congestion, but rather like some transient hardware
error instead, and the congestion window is thus not decreased.

D. Disabling TCP congestion control

Since the network bottleneck of our experiment is able to
directly regulate the sender thanks to Ethernet flow control,
TCP congestion control (cwnd) is not needed anymore. It
can even be harmful as previously seen in figure 4, since it
conservatively considers all packet losses as congestion signs.
Accordingly, this last experiment demonstrates the benefit of
disablingTCP’s congestion control when it is not needed. Our
modifications to the Linux kernel 2.4 allow disablingTCP’s
congestion control on an per-interface basis. The user can force
this disabling or ask for a “safer” mode that checks the state
of 802.3x flow control on the Ethernet link before acting.

In addition to emulating latency, we also used NISTNet
to generate random packet drops. First, figure 9 shows the
performance impact of a high random packet loss rate (1 out
of 2000 packets in average) on the vanillaTCP flow of the
very first experiment (figure 2). Next, figure 10 shows the
performance benefits achieved by “trading”TCP’s congestion
control for Ethernet flow control: despite the same high packet
loss rate, performance is close to the wire-speed of the
bottleneck (which is ten times smaller that the sender’s link).

However, figure 10 shows that the application bitrate is
still not perfectly wire rate: (1) performance takes some time
to ramp up (about 100 ms) and (2) some short but deep
performance drops also happen later.

A closer inspection of the packet trace shows that the ramp
up time to wire rate (4-RTTs) is due to a Linux peculiarity: a
“receiver slow-start” algorithm. The receive buffer is not fully
advertised at the start of the connection but progressively in-
creased instead. We could not really understand the motivation
for this, but could fix it easily in Linux kernel code.

As for the subsequent performance drops, we traced them to
a big default transmission queue size (1000 packets) inside the
ethernet driver (belowTCP). This queue fills up and creates an
internal 160 ms long latency inside the sender, in addition to
the 12 ms emulated link latency, artificially and considerably
increasing thethroughput×delay product. Since SACKs do
not guarantee any reception but may be legally reneged, a
couple of drops are then enough to quickly exhaust theTCP’s
socket buffer on the sender. A huge socket buffer size on the
sender or a smaller driver transmission queue are enough to
fix this issue.

III. F ROM HOP-BY-HOP, TO QUEUE-TO-QUEUE

The case against alayeredcongestion control approach:
one may question the necessity of using a low-level flow
control technique such asIEEE 802.3x to implement back-
pressure: why not simply manage congestion at theIP level?
The issue at stake here is that congestion is a problem of
queues filling up trying to save packets in front of a bottleneck,
whether this bottleneck is at theIP level or not. It is well-
known that layered abstractions provide a useful tool for the
design of modular and inter-operable hardware and software,
but are much less relevant concerning implementation and
performance issues [14]. A flow control scheme purely de-
signed at theIP layer would consider an abstracted lower,
link layer. But congestion and drops may also happen at
that lower layer, either in switches or in interfaces cards.
Overflown queues dropping packets do not care about their
OSI layer; they care about the amount of free buffers they
have and about neighbour queues (upstream and downstream).
Neighbour queues are generallynot queues at the same layer,
which is why congestion control is hard to implement layer-
wise [15][16].

For instance, preventing sockets (level 4) from overflowing
the transmission ring of the Ethernet driver (level 2)cannotbe
achieved according to somelayered flow/congestion control
scheme: a backpressure signal must generally cross a layer
boundary. Symmetrically, theIP stack of a receiver overflown
by Ethernet packets has no choice but to back-pressure its
Ethernet device which is located at a different layer.Every
queue must exert back-pressure upstream if one wants to
avoid packet losses, and producer and consumer pairs are
usually located atdifferent levels. The only case where the
upstream and downstream queues are located at the same
level is when this level is the lowest. It is much more often
Ethernet thanIP. However, this does not prevent layer-wise
flow control (like TCP receive window for instance) to provide
useful optimizations: there is no point in injecting packets in
the network if we know in advance that the receiver will drop
or back-pressure them.



IV. N OQ PROPOSAL

A. Implementation

The basic idea behind back-pressure is simple (not all of
its implications are). A congested queue signals its state to
upstream queues and thus delay the delivery of additional
packets, until it has regained enough buffers to avoid dropping
incoming traffic. This flow control signal may then propagate
backwards if needed, in order to prevent any loss of packets.
We are currently trying to implement a fully back-pressured
Network of Queues(NoQ) by slightly modifying LinuxTCP/IP
networking software. Let us review the modifications needed.

Transport protocols: to be adapted toNoQ, they will
require very little modifications compared to currentIP-based
transport protocols implementations: this implies only the
modification of the congestion related code, suppressing the
deleterious slow start and congestion window algorithms on
this NoQ interface, as we have successfully demonstrated with
the TCP implementation of Linux 2.4 in section II-D2.

Queueing inside nodes:Actually, back-pressure is al-
ready implementedinside network nodes; most of them usu-
ally do not drop packets internally, they only dropincoming
packets when their corresponding input buffer is full. For
some reason (small latency? trust?), network nodes are used
to drop packets coming from outside, but not from inside.
Figure 8 is an interesting example of this: since packets from
different TCP flows are not dropped but blocked inside the
host,TCP’s fairness (RFC), based on drops, is technically
not implemented inside the Linux 2.4.20 kernel. Of course,
since packets are usually dropped just later in the “outside”
network, this is usually a non-issue.

Linux receivers:Thanks to the newNAPI [17] ethernet
driver design, making a Linux receiver able to back-pressure
the network has been straight-forward.

IP to IP flow control: has to be implemented for cases
where there is no lower layer, like onIP/DWDM links for
instance.

B. Benefits

Throughput:Transmitting nodes are no longer limited by
a conservative congestion window, they can instantaneously
transmit as fast as they can. They will ultimately be throttled
down to the capacity of the network bottleneck on the path
they use, which will “back-pressure” them. The throughput
of the protocol no longer depends on link peculiarities (e.g.,
burstiness) or on constants like Maximum Transmission Units,
and packet rate is aligned on the wire-rate of bottlenecks.
Moreover, throughput no longer depends on latency, as long
as buffering is provided.

Fairness: TCP flows try to fairly share bottlenecks [3].
In NoQ, fairness would not be among flows anymore but
more likely implemented among “ports”, thanks to round robin
scheduling for instance (NoQ does not prevent more complex
packet scheduling strategies). Fairness can converge instantly,

2The code is available athttp://marc.herbert.free.fr/noq/

since it is implemented right at the multiplexing point instead
of end to end.

Efficient usage of buffers:In TCP/IP networks, only
buffers of congested links are used; all other buffers are
wasted, since links with a capacity greater than the bottlenecks
keep their queue empty. Thanks to its backwards propagation
of congestion,NoQ may effectively useall buffers on the route
to damper transient congestion and avoid packet losses.

C. Issues

Of course, all this does not come free. The concept of back-
pressure is not new, there are simple reasons why it is was
avoided in the Internet, for instance.

Latency: Back-pressure makes it impossible to control
latency (there is a throughput/latency tradeoff here). Let us
underline again thatNoQ is not compatible with time-sensitive
applications like multimedia or interactive applications; it is
clearly designed at solving specific issues like reliable high
speed file transfers in some computing grids. ANoQ should
admittedly be implemented along a classicalTCP/IP network
which would serve as a control plane for it.

HOL blocking: The main issue with hop by hop con-
gestion control is definitely Head Of Line (HOL) blocking:
by filling up queues, a congesting flow may hurt other flows
sharing the same buffers, since the buffers cannot tell the
difference between flows. This is especially disappointing
when others flows have a different, non-congested ultimate
destination3. There is no perfect solution to HOL blocking,
but a broad range of techniques to mitigate it, that can be
used cumulatively.

HOL blocking is mainly due to the logical multiplexing of
flows [18]. Logical multiplexing is for instance when anIP
queue cannot distinguish differentTCP flows, or an Ethernet
queue can not distinguish amongIP destinations. This prevents
any differentiation in resource management. The first, obvious
way to mitigate HOL blocking is to limit logical multiplexing
by limiting the number of concurrent flows: in the case of
small, dedicated grid networks with only a few flows at once
carried by a fewMPλS paths, aNoQ will be applicable. On
the other hand,HOL blocking makesNoQ irrelevant in huge
networks. The threshold has to be investigated.

Another way to limit logical multiplexing and mitigate
HOLB is to have more complex switches, with a more refined
understanding of flows. For instance switches implementing
Virtual Output Queueing [19], [20] or even circuit-oriented
techniques. Again, this solutions scales to a limited, but still
useful extent.

Some other receiver-based solutions allow limiting conges-
tion as a whole:

• balanced network engineering helps avoid as often as
possible cases like “1 Gb/s sender to 100 Mb/s receiver”;

• message passing, as opposed to stream-basedAPIs, allow
the receiver to know in advance the size and destination

3Considering a similar traffic problem transposed in a standardTCP/IP
network, the congesting flow will also harm other flows; but the main
difference is that congestion will not propagate backwards.

http://marc.herbert.free.fr/noq/


of expected data, thus avoiding slow and unpredictable
memory management operations;

• additional flow controls thatbypasssome queues and
direct queue-to-queue controls, for instance a tunedTCP’s
end to end receive window, provide useful optimizations:
some network location may refrain itself from sending
too much data, knowing in advance that a bottleneck in
front of some far-away target would be congested.

V. CONCLUSION

Our experiments have first demonstrated the potential im-
pact of the link layer behaviour onTCP performance, then
how Ethernet flow control can break this dependence and
bring wire-rate performance and fairness to applications. These
experiments also taught us about the risk of too-abstracted
models, and the fact that every buffer in the system must
be taken into account when considering packet-loss issues.
Finally, we have elaborated and studied feasibility of a
fully back-pressured network (NoQ), that can be implemented
thanks to slight modifications to existing networking hardware
and software. We think that the main issue of a back-pressured
network (Head Of Line blocking) can be moderated in the
specific context of grid networks of limited size.
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